LeetCode 208.实现前缀树

orbisz2024/04/09算法Java

题目open in new window

Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补全和拼写检查。

请你实现 Trie 类:

Trie()初始化前缀树对象。

void insert(String word) 向前缀树中插入字符串 word

boolean search(String word) 如果字符串 word 在前缀树中,返回 true(即,在检索之前已经插入);否则,返回 false

boolean startsWith(String prefix) 如果之前已经插入的字符串 word 的前缀之一为 prefix ,返回 true ;否则,返回 false

解题思路

核心在于构造一颗多叉树(每个节点可以有多个子节点,对应26个小写字母),并实现三个操作:插入字符串、查找完整字符串、判断前缀。 那么就需要构建一个节点类。

节点类TrieNode()

  • 每个节点维护
    • children:一个大小为26的数组,代表26个小写字母的子节点
    • isEnd:布尔变量,表示当前节点是否为某个单词的结尾。

insert()思路

遍历word中的每一个字符,从根节点root开始,将字符映射到子节点上,如果没有子节点,则新建 然后进入下一层,知道遍历完,并把结尾节点置为true

对于查找完整字符串、判断前缀的操作,可能通过构建新方法searchPrefix()来一同实现,即检查前缀树中是否存在需要的前缀。

searchPrefix()思路

遍历prefix中的每一个字符,从根节点root开始,检查子节点上是否存在字符,如果没有子节点,返回null 然后进入下一层,知道遍历完,并返回结尾节点。

代码实现

class Trie {
    // 内部节点类
    private class TrieNode {
        // 当前节点的所有子节点(a - z)
        TrieNode[] children;
        // 是否是一个单词的结尾
        boolean isEnd;

        public TrieNode() {
            children = new TrieNode[26];  // 26个英文字母
            isEnd = false;
        }
    }

    // Trie 的根节点
    private TrieNode root;

    // 构造函数:初始化根节点
    public Trie() {
        root = new TrieNode();
    }

    // 插入一个单词
    public void insert(String word) {
        TrieNode node = root;
        for (char c : word.toCharArray()) {
            int idx = c - 'a';  // 将字符映射到0~25
            if (node.children[idx] == null) {
                node.children[idx] = new TrieNode();  // 如果没有子节点则新建
            }
            node = node.children[idx];  // 进入下一层
        }
        node.isEnd = true;  // 插入结束后标记该节点为单词结尾
    }

    // 查找一个完整的单词是否存在
    public boolean search(String word) {
        TrieNode node = searchPrefix(word);
        return node != null && node.isEnd;
    }

    // 判断是否存在某个前缀
    public boolean startsWith(String prefix) {
        return searchPrefix(prefix) != null;
    }

    // 辅助函数:返回以某前缀结尾的节点(可用于 search 和 startsWith)
    private TrieNode searchPrefix(String prefix) {
        TrieNode node = root;
        for (char c : prefix.toCharArray()) {
            int idx = c - 'a';
            if (node.children[idx] == null) {
                return null;  // 某个字母不存在,说明匹配失败
            }
            node = node.children[idx];
        }
        return node;  // 返回最后一个匹配的节点
    }
}
最近更新 2025/6/26 22:31:51